Coulomb Branch
Gluon Scattering
via AdS/CFT
Burrington+LPZ

Overview

Coulomb Branch Gluon Scattering via AdS/CFT

Benjamin A. Burrington with

Leopoldo A. Pando Zayas

Motivation

- Alday and Maldacena give a prescription for computing the color ordered $g g \rightarrow g g$
- such scattering amplitudes are not "IR safe" observables.
- however play a role in hard scattering (hadronization is slow)
- AdS/CFT provides a method for computing these quantities at strong coupling

Overview
Alday Maldacena
prescription
Coulomb branch
geometry
What can we
calculate?
Concluding
Remarks

Motivation

- Alday and Maldacena give a prescription for computing the color ordered $g g \rightarrow g g$
- such scattering amplitudes are not "IR safe" observables.
- however play a role in hard scattering (hadronization is slow)
- AdS/CFT provides a method for computing these

Overview
Alday Maldacena

- "Real world" physics: Spontaneous symmetry breaking
- the "expected Higgs" $\mathrm{SU}(2) \times \mathrm{U}(1) \rightarrow \mathrm{U}(1)$
- GUT models: $\mathrm{SU}(5) \rightarrow \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$

Motivation

- Alday and Maldacena give a prescription for computing the color ordered $g g \rightarrow g g$
- such scattering amplitudes are not "IR safe" observables.
- however play a role in hard scattering (hadronization is slow)
- AdS/CFT provides a method for computing these quantities at strong coupling
- "Real world" physics: Spontaneous symmetry breaking
- the "expected Higgs" $\mathrm{SU}(2) \times \mathrm{U}(1) \rightarrow \mathrm{U}(1)$
- GUT models: $\mathrm{SU}(5) \rightarrow \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$
- An easy model to study via AdS/CFT is therefore $\mathcal{N}=4$ SYM theory with $S U\left(n_{1}+n_{2}\right)$ gauge group spontaneously broken to $S U\left(n_{1}\right) \times S U\left(n_{2}\right) \times U(1)$.

Plan of Talk

 Gluon Scattering via AdS/CFTBurrington+LPZ

Overview
Alday Maldacena
prescription
Coulomb branch

- Alday-Maldacena prescription.
- The modification we examine: Coulomb branch of the theory.
- What can we compute? A simple example: massive "W"s in loops as corrections.

Review

- In AM, they introduce an IR regulator brane on which to have the open string end with 4 momenta k_{i}.

Coulomb Branch
Gluon Scattering

Overview
Alday Maldacena
prescription
Coulomb branch geometry

What can we calculate?

Concluding
Remarks

Review

- Recall that we wish to fix the momentum conjugate to x^{μ}. However due to metric factors, the proper momentum of the string

$$
k_{p r}=\frac{z_{I R}}{R} k_{\mathrm{conj}}
$$

- So, when we remove the cutoff, we are talking about high proper momentum.
- Upshot of flat space calculation is that such a limit is dominated by the saddle point i.e. classical solutions.

Review

- Final crucial ingredient: we need to fix momenta on the boundary of the classical world sheet.
- The boundary conditions are easier to impose after T-duality.
- Intuitively: T-duality maps "winding \leftrightarrow momentum"
- Nothing is compact: continuum momentum goes to

Overview

Alday Maldacena
prescription
Coulomb branch continuum extension

- Metric:

$$
\begin{aligned}
d s^{2}= & \frac{r^{2}}{R^{2}}\left(d x_{\mu} d x^{\mu}\right)+R^{2} \frac{d r^{2}}{r^{2}} \\
& \rightarrow \frac{R^{2}}{r^{2}}\left(d x_{\mu} d x^{\mu}\right)+R^{2} \frac{d r^{2}}{r^{2}}
\end{aligned}
$$

Review

Coulomb Branch Gluon Scattering via AdS/CFT

Burrington+LPZ

- T dualizing the geometry

Overview

Alday Maldacena prescription

Coulomb branch geometry

What can we calculate?

Concluding
Remarks

- The AM prescription is now that the color ordered planar amplitude is Gluon Scattering via AdS/CFT

Burrington+LPZ

$$
\mathcal{A}\left(k_{1} \ldots k_{4}\right)=e^{-S\left(k_{1} \ldots k_{4}\right)}
$$

- Actual IR regularization impose

Coulomb branch geometry

What can we calculate?

Concluding
Remarks

SUGRA background

 Gluon Scattering via AdS/CFTBurrington+LPZ

Overview

Alday Maldacena

- In general, we will be examining geometries of the following kind

$$
\begin{aligned}
d s^{2} & =H^{-1 / 2} d x_{\mu} d x^{\mu}+H^{1 / 2} d z_{m} d z^{m} \\
H & =R^{4}\left(\frac{n_{1}}{(\vec{r})^{4}}+\frac{n_{2}}{\left(\vec{r}-\vec{a}_{0}\right)^{4}}\right) .
\end{aligned}
$$

SUGRA background: T-dual

Coulomb Branch
Gluon Scattering
via AdS/CFT
Burrington+LPZ

Overview

Alday Maldacena
prescription

- T-duality: flip power of H in front of $d x_{\mu} d x^{\mu}$ and refer to the T-dual coordinates as y^{μ}.

$$
\begin{aligned}
d s^{2} & =H^{1 / 2}(r) d y_{\mu} d y^{\mu}+H^{1 / 2}(r) d r^{2} \\
H & =R^{4}\left(\frac{n_{1}}{(r)^{4}}+\frac{n_{2}}{\left(r-a_{0}\right)^{4}}\right)
\end{aligned}
$$

Coulomb branch geometry

What can we
calculate?
Concluding
Remarks

- Two AdS boundary regions.

T-duality action

Coulomb Branch Gluon Scattering via AdS/CFT

Burrington+LPZ

Overview

\int T-Duality

Alday Maldacena
prescription
Coulomb branch
geometry
What can we
calculate?
Concluding
Remarks

World sheet action

Coulomb Branch Gluon Scattering via AdS/CFT

Burrington+LPZ

Overview
Alday Maldacena

- We make the Ansatz

$$
y_{0}\left(y_{1}, y_{2}\right), \quad r\left(y_{1}, y_{2}\right), \quad y_{3}=0
$$

which gives the worldsheet action as

$$
\begin{aligned}
S= & \frac{1}{2 \pi \alpha^{\prime}} \int d y_{1} d y_{2} H(r)^{\frac{1}{2}} \times \\
& \sqrt{1-\left(\partial_{i} y_{0}\right)^{2}+\left(\partial_{i} r\right)^{2}-\left(\partial_{1} r \partial_{2} y_{0}-\partial_{2} r \partial_{1} y_{0}\right)^{2}}
\end{aligned}
$$

Some limits

- Generally we could look for general solutions to the equations of motion. However, we can actually get some information using the old solution written by Kruczenski and used by Alday and Maldacena.
- One limit is where $|s|,|t|,|u| \gg r_{0} \gg a_{0}$, and the other is where $a_{0} \gg|s|,|t|,|u| \gg r_{0}$. (we use a to set the scale of $|s|,|t|,|u|$ as in AM).

limits...

- In both of these limits, the action can be written as

$$
S_{t o t}=S_{0}+\epsilon S_{1}+\ldots
$$

Coulomb branch
with S_{0} the action in pure AdS.

- To evaluate the correction to the action on the solution, one plugs in the 0th order solution into the first order action.

Example

- To be concrete, we work the example

$$
a_{0} \gg|s|,|t|,|u| \gg r_{0}
$$

- For such a solution $r\left(y_{1}, y_{2}\right) \ll a_{0}$ and so we may expand for small $r\left(y_{1}, y_{2}\right) / a_{0}$.

$$
\begin{aligned}
& S_{t o t}= \\
& \frac{R^{2} \sqrt{n_{1}}}{2 \pi \alpha^{\prime}} \int d y_{1} d y_{2} \frac{1}{r^{2}}\left(1+\frac{1}{2} \frac{r^{4}}{a_{0}^{4}} \frac{n_{2}}{n_{1}}+\ldots\right) \times \\
& \sqrt{1-\left(\partial_{i} y_{0}\right)^{2}+\left(\partial_{i} r\right)^{2}-\left(\partial_{1} r \partial_{2} y_{0}-\partial_{2} r \partial_{1} y_{0}\right)^{2}}
\end{aligned}
$$

- Note that the correction has extra powers of r in the numerator: this causes the final answer to be finite and not depend at all on r_{0}.

Example

- We want to evaluate the second part on the AM solution written in y_{1}, y_{2} coordinates

$$
\begin{aligned}
r= & \left(\frac{\left(4 y_{1}^{2} b^{2}-2 a^{2}+2 a \sqrt{a^{2}-4 b y_{1} y_{2}}+4 b y_{1} y_{2}\right)}{b y_{1}^{2}}\right. \\
\times & \left.\frac{\left(4 y_{2}^{2} b^{2}-2 a^{2}+2 a \sqrt{a^{2}-4 b y_{1} y_{2}}+4 b y_{1} y_{2}\right)}{b y_{2}^{2}}\right)^{1 / 2} \\
& \times \frac{y_{1} y_{2}}{2\left(a-\sqrt{a^{2}-4 b y_{1} y_{2}}\right)} \\
y_{0}= & \frac{1}{2 b} \sqrt{\left(1+b^{2}\right)}\left(a-\sqrt{a^{2}-4 b y_{1} y_{2}}\right)
\end{aligned}
$$

- looks messy... but there is an analytic result

Example

- The final result is

$$
\Delta S=\frac{R^{2} \sqrt{n_{1}}}{2 \pi \alpha^{\prime}} \frac{n_{2} a^{4}}{6 a_{0}^{4} n_{1}} \frac{\left(1+b^{2}\right) \ln \left(\frac{(1+b)^{2}}{(1-b)^{2}}\right)-4 b}{b^{3}}
$$

- or written in terms of Madelstam variables s, t

Overview

Alday Maldacena
prescription
Coulomb branch geometry

What can we
calculate?
Concluding
Remarks

$$
S_{1}=\frac{R^{2} \sqrt{n_{1}}}{2 \pi \alpha^{\prime}} \frac{n_{2} \pi^{4}}{n_{1} a_{0}^{4}}\left(\frac{4}{3} \frac{t^{2} s^{2}(s+t)}{(s-t)^{3}} \ln \left(\frac{s}{t}\right)-\frac{8}{3} \frac{t^{2} s^{2}}{(s-t)^{2}}\right)
$$

- Note as $s \rightarrow t$ this is finite.
- Note also this goes as $\frac{1}{a_{0}^{4}} \sim \frac{1}{M_{W}^{4}}$
- So, what have we computed? We have

$$
\begin{aligned}
\mathcal{A}=\exp \left(-S_{t o t}\right) & =\exp \left(-S_{A M}\right) \exp \left(-S_{1}\right) \\
& =\exp \left(-S_{A M}\right)\left(1-S_{1}\right)
\end{aligned}
$$

- This is the contribution to the amplitude coming from massive "Ws" running in loops to leading order in $1 / M_{W}$.

Coulomb Branch Gluon Scattering via AdS/CFT

Overview

Alday Maldacena
prescription
Coulomb branch geometry

What can we
calculate?
Concluding
Remarks

Coulomb Branch Gluon Scattering via AdS/CFT
 Burrington+LPZ
 Overview

- This suggests to expand the field theory result the same way.

$$
\begin{aligned}
& \mathcal{A}\left(s, t, u, M, \Lambda_{I R}\right) \\
& =\mathcal{A}\left(s, t, u, M=\infty, \Lambda_{I R}\right)\left(1+\frac{1}{M^{n}} \times(\mathcal{X})+\cdots\right)
\end{aligned}
$$

- ... yet to be done.

Coulomb Branch Gluon Scattering via AdS/CFT

Burrington+LPZ

- The other limit can be explored as well, namely $|s|,|t|,|u| \gg r_{0} \gg a_{0}$

Coulomb branch geometry

What can we
calculate?
Concluding
Remarks

- The $s \neq t$ case is hard:

Coulomb Branch

- We cut at $r=$ constant with

$$
\begin{aligned}
r= & \left(\frac{\left(4 y_{1}^{2} b^{2}-2 a^{2}+2 a \sqrt{a^{2}-4 b y_{1} y_{2}}+4 b y_{1} y_{2}\right)}{b y_{1}^{2}}\right. \\
\times & \left.\frac{\left(4 y_{2}^{2} b^{2}-2 a^{2}+2 a \sqrt{a^{2}-4 b y_{1} y_{2}}+4 b y_{1} y_{2}\right)}{b y_{2}^{2}}\right)^{1 / 2} \\
& \times \frac{y_{1} y_{2}}{2\left(a-\sqrt{a^{2}-4 b y_{1} y_{2}}\right)} \\
y_{0}= & \frac{1}{2 b} \sqrt{\left(1+b^{2}\right)\left(a-\sqrt{a^{2}-4 b y_{1} y_{2}}\right) .}
\end{aligned}
$$

- so $r=\epsilon$ gives $y_{1}\left(y_{2}, \epsilon\right)$ in principal. In practice, the above is difficult, unless $b=0$ i.e. $s=t$.
- We only analyze $s=t$.
- In this case, we find

Coulomb Branch
Gluon Scattering
via AdS/CFT
Burrington+LPZ

$$
\begin{aligned}
S_{0}=\frac{R^{2} \sqrt{n_{1}+n_{2}}}{2 \pi \alpha^{\prime}}[& \frac{1}{2}\left(\ln \left(\frac{r_{0}^{2}}{8 \pi^{2}(-s)}\right)\right)^{2} \\
& \left.-2 \ln (2)^{2}-\frac{1}{4}-\frac{1}{6} \pi^{2}\right]
\end{aligned}
$$

- and the correction to the action

$$
\begin{aligned}
& S_{1}=\frac{R^{2} \sqrt{n_{1}+n_{2}}}{2 \pi \alpha^{\prime}} \frac{n_{1} n_{2} a_{0}^{2}}{\left(n_{1}+n_{2}\right)^{2}} \frac{5}{4} \\
& \quad\left[\frac{\left(12 \ln (2)+1-4 \ln \left[\frac{2 r_{0}^{2}}{\pi^{2}(-s)}\right]\right)}{r_{0}^{2}}+\ldots\right] .
\end{aligned}
$$

- not too much to say: similar field theory limits look promising.

Future work

- Bern, Dixon and Smirnov calculation in Coulomb phase? Expected dependence on $n_{2} / n_{1}, 1 / M_{W}$?
- Answer the holographically? Construct the appropriate worldsheet? Interpolates between an unbroken $S U\left(n_{1}+n_{2}\right)$ and the broken phase?

Alday Maldacena prescription

Coulomb branch geometry

What can we calculate?

Concluding
Remarks

